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Abstract

The thermal entrance forced convection in a circular duct with a prescribed wall heat flux distribution is studied under the assump-
tions of a fully developed laminar flow and of a negligible axial heat conduction in the fluid, by taking into account the effect of viscous
dissipation. The solution of the local energy balance equation is obtained analytically by employing the Laplace transform method. The
effect of viscous dissipation is taken into account also in the region upstream of the entrance cross-section, by assuming an adiabatic
preparation of the fluid. The latter hypothesis implies that the initial condition in the entrance cross-section is a non-uniform radial tem-
perature distribution. Two special cases are investigated in detail: an axially uniform wall heat flux, a wall heat flux varying linearly in the
axial direction.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The effect of viscous dissipation may become very
important in several flow configurations occurring in the
engineering practice. In fact, viscous dissipation affects
strongly the heat transfer process whenever the operating
fluid has a low thermal conductivity, a high viscosity and
flows in ducts with a small cross-section and a small wall
heat flux. All these features may occur, for instance, in
the microchannel flows considered for the design of
MEMS. As is well known, the effect of viscous heating
increases with the square of the mass flow rate and, as a
consequence, becomes specially important under condi-
tions of forced convection.
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A traditional arena for predictions of the viscous dissi-
pation effect in duct flows is the analysis of the laminar
thermal entrance regime. Several duct geometries have
been investigated, even if most of the published papers
refer to the circular duct or to the parallel-plate channel.
The thermal entrance problem with viscous dissipation
has been investigated by Brinkman [1] with reference to
uniform wall temperature or adiabatic wall boundary con-
ditions. Further analyses have been performed by Ou and
Cheng [2–4], Lin et al. [5] and Basu and Roy [6]. The latter
papers include the study of the boundary conditions of uni-
form wall heat flux [2,6] and of external convection (third
kind boundary condition) [5]. The solutions presented by
these authors are extensions of the classical Graetz–Nusselt
solution, obtained in the absence of internal heat source
terms and widely treated in the literature [7]. The main con-
sequence of the viscous dissipation effect is in the evalua-
tion of the local Nusselt number. Indeed, it has been
pointed out that this quantity may become singular at some
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Nomenclature

a, b arbitrary complex numbers, Eq. (35)
Br lu2

m=ðr0qw0Þ, Brinkman number
cp specific heat at constant pressure
c0 constant, Eq. (65)
C function of b, Eq. (28)

1F1 confluent hypergeometric function of the first
kind

G function of f and b, Eq. (37)
k thermal conductivity
L�th dimensionless thermal entrance length
Nu Nusselt number
Pe Peclet number
qw wall heat flux
qw0 uniform wall heat flux
r radial coordinate
r0 radius of the duct
s Laplace transformed axial coordinate
sn simple poles of ~wðg; sÞ, Eq. (29)
T temperature
Te entrance wall temperature
um average velocity
Y analytic function defined by Eq. (35)
z axial coordinate

Greek symbols

a thermal diffusivity
b complex variable, Eq. (26)

bn positive roots of Eq. (30)
f dimensionless axial coordinate, Eq. (6)
fs value of f corresponding to a singularity of

Nu

g dimensionless radial coordinate, Eq. (6)
h dimensionless temperature, Eq. (6)
l dynamic viscosity
m kinematic viscosity
n dummy integration variable
u function of g and b, Eq. (27)
/w dimensionless wall heat flux, Eq. (6)
v function of g, Eq. (62)
w function of g and f, Eq. (20)
W function of g and f, Eq. (11)
X1, X2 functions of f, Eqs. (51) and (70)

Superscripts/subscripts

� Laplace transform
0 derivative of a function with respect to its

argument
w wall value
b bulk mean value, Eq. (38)
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axial station. The reason of these singularities is that, at
some specific positions, the wall heat flux may be nonzero
while the difference between the wall temperature and the
bulk temperature is zero. Stated differently, the traditional
definition of the local Nusselt number based on the choice
of the bulk temperature as the reference temperature may
become pathologic when viscous heating is taken into
account [5]. More recently, studies of the viscous dissipa-
tion effect in laminar duct flows have been performed in
order to include the cases of slug velocity profile, of slip-
flow in microtubes and of non-Newtonian fluid behavior
[8–11].

The aim of the present paper is to perform an analytical
study of the thermal entrance region heat transfer in a cir-
cular duct with a prescribed axially-varying wall heat flux.
The effect of viscous dissipation is taken into account in a
self-consistent way by assuming a non-uniform tempera-
ture profile as the initial condition at the entrance axial sta-
tion. The latter profile is obtained as the fully developed
profile determined by an upstream adiabatic preparation
of the fluid. It will be shown that this assumption induces
strong differences with respect to the classical solutions of
the entrance problem with viscous dissipation, which are
based on a uniform entrance temperature profile. The solu-
tion of the local energy balance equation is obtained ana-
lytically by means of the Laplace transform method.

2. Mathematical model

Let us consider laminar Poiseuille flow in a circular duct
such that, in the region z < 0, the wall is thermally insulated
while, in the region z > 0, an axisymmetric wall heat flux
distribution qw(z) is prescribed. A sketch of the duct and
of the prescribed boundary conditions is given in Fig. 1.
Forced convection regime is considered, the effect of axial
heat conduction in the fluid and in the wall is neglected,
while the effect of viscous dissipation is taken into account.

Under the above assumptions, the governing equations
are
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Fig. 1. Drawing of the duct and of the boundary conditions.

28 A. Barletta, E. Magyari / International Journal of Heat and Mass Transfer 50 (2007) 26–35
k
oT
or

����
r¼r0
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In the region z < 0 the hydrodynamic and thermal prepara-
tion of the fluid takes place. In the region z > 0, a thermal
entrance regime determined by the distribution qw(z) and
by the thermal preparation occurs. The region z < 0, virtu-
ally infinite, is assumed to be sufficiently long for the veloc-
ity profile to become axially invariant and for the
temperature profile to attain, at least in the vicinity of z =
0, the fully developed form compatible with the wall
thermal insulation condition. As a consequence of Eqs.
(1)–(3), the latter profile is given by

T ðr; zÞ ¼ T ðr0; zÞ �
2lu2

m

k
1� r2

r2
0

� �2

: ð5Þ

Let us introduce the dimensionless quantities

g ¼ r
r0

; f ¼ z
2r0Pe

; h ¼ kðT � T eÞ
lu2

m

;
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; Pe ¼ 2r0um

a
; ð6Þ

where Te = T(r0,0). Then, Eqs. (1), (2), (4) and (5) yield the
following parabolic initial value problem in the domain
f > 0:
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hðg; 0Þ ¼ �2ð1� g2Þ2: ð10Þ

The solution of Eqs. (7)–(10) can be expressed in the form

hðg; fÞ ¼ hðg; 0Þ þ 32fþWðg; fÞ; ð11Þ
where W(g,f) is the solution of the initial value problem
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The redefinition (11) of the unknown function in Eqs.
(7)–(10) has allowed one to map a non-homogeneous par-
tial differential equation with a non-homogeneous initial
condition into a homogeneous partial differential equation
with a homogeneous initial condition, namely Eqs. (12)
and (15). Thus, one obtains a differential problem, Eqs.
(12)–(15), which can be solved in a straightforward way
by the Laplace transform method, as it will be shown in
the next section. The effectiveness of the redefinition of
the unknown variable in Eqs. (7)–(10) is due to the compat-
ibility between the initial condition (10) and the partial dif-
ferential equation (7). Indeed, the initial temperature
profile (10) has been obtained by employing a solution of
Eq. (7), i.e. the solution obtained by expressing Eq. (5) in
a dimensionless form. It must be pointed out that the effi-
cacy of a redefinition similar to Eq. (11) would have been
precluded if one had adopted the assumption of a uniform
temperature profile at z = 0. In fact, a uniform temperature
profile can be in no sense traced back to a solution of Eq.
(7). As a consequence, the procedure to solve the present
thermal entrance problem by means of the Laplace trans-
form method would be far more complicated in the case
of a uniform entrance temperature profile. The extent of
this complication can be realized by considering the treat-
ment described in the next section.

3. Analytical solution

Let us define the Laplace transform of function W,

eWðg; sÞ ¼ Z þ1

0

Wðg; fÞe�sfdf: ð16Þ

On account of the properties of the Laplace transform
[12], the governing Eqs. (12)–(15) yield
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3.1. Solution in the Laplace transform domain

The solution of Eq. (17) can be easily expressed in the
formeWðg; sÞ ¼ ~/wðsÞ ~wðg; sÞ; ð20Þ



Table 1
The first 20 values of bn and C0(bn)

n bn C0(bn)

1 10.1350110019 0.489080441271
2 18.3152128526 �0.623601390240
3 26.3944494701 0.717608404264
4 34.4404587279 �0.792430816789
5 42.4710345631 0.855630572841
6 50.4930623658 �0.910887946159
7 58.5098111032 0.960308860407
8 66.5230474681 �1.00522572585
9 74.5338164220 1.04654178666

10 82.5427786917 �1.08490110043
11 90.5503741204 1.12078103927
12 98.5569077531 �1.15454643994
13 106.562598334 1.18648315907
14 114.567607139 �1.21681983842
15 122.572055898 1.24574256300
16 130.576038355 �1.27340504808
17 138.579627971 1.29993591089
18 146.582883195 �1.32544398203
19 154.585851159 1.35002226377
20 162.588570327 �1.37375093221
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where ~wðg; sÞ is the solution of the boundary value problem
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By invoking the convolution theorem of Laplace trans-
forms [12] and by using Eqs. (10), (11) and (20), the dimen-
sionless temperature h(g,f) in the thermal entrance region
f > 0 can be formally expressed as

hðg; fÞ ¼ �2ð1� g2Þ2 þ 32fþ
Z f

0

/wðnÞwðg; f� nÞdn:

ð24Þ
The last task is the solution of the boundary value problem
(21)–(23) and the evaluation of function w(g,f), i.e. of the
inverse Laplace transform of ~wðg; sÞ.

The general solution of Eq. (21) that fulfils Eq. (22)
can be expressed in terms of the confluent hypergeometric
function of the first kind

~wðg; sÞ ¼ uðg; bÞ
CðbÞ ; ð25Þ

b2 ¼ �2s; ð26Þ

uðg; bÞ ¼ e�bg2=4
1F 1

4� b
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; 1;
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2
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where C(b) is an integration constant that can be deter-
mined by applying the boundary condition (23). In fact,
by employing the properties of the confluent hypergeomet-
ric function [13], one obtains

CðbÞ ¼ du
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3.2. Inversion of the Laplace transform

On account of Eqs. (25)–(28), it can be shown that
~wðg; sÞ is a function of the complex variable s which admits
an infinite sequence of real simple poles for

s ¼ sn ¼ �
b2

n

2
; n ¼ 0; 1; 2; . . . ; ð29Þ

where b0 is 0, while, for n > 0, bn are the positive roots of
the equation

CðbÞ ¼ 0: ð30Þ
The first 20 positive roots bn are reported in Table 1. By

employing the usual method for the inversion of Laplace
transforms based on the integration along the Bromwich
contour [12], one can express the inverse Laplace transform
of ~wðg; sÞ as the sum of the residues of esf ~wðg; sÞ evaluated
for all the poles s = sn, namely
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On account of Eqs. (25)–(28), the residues are easily
determined
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The derivative C0(b) can be evaluated on account of Eq.
(28) and of the properties of the confluent hypergeometric
function [13],
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where Y(a,b;x) is the analytic function

Y ða; b; xÞ ¼ o

oa 1F 1ða; b; xÞ: ð35Þ
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The first 20 values of C0(bn) are given in Table 1. By
employing Eqs. (31)–(33), Eq. (24) can be rewritten as

hðg; fÞ ¼ �2ð1� g2Þ2 þ 32fþ 8

Z f

0

/wðnÞdn

�
X1
n¼1
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C0ðbnÞ
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nf=2; ð36Þ

where function G(f,b) is given by

Gðf; bÞ ¼
Z f

0

/wðnÞeb2n=2 dn: ð37Þ
3.3. Nusselt number

Let us introduce the bulk temperature,

T b ¼ 4

Z 1

0

gð1� g2ÞT dg: ð38Þ

Then, on account of Eqs. (21), (25) and (30), one can deter-
mine the dimensionless difference between the wall temper-
ature and the bulk temperature,

hw � hb ¼
kðT w � T bÞ

lu2
m

¼ 1�
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uð1; bnÞGðf; bnÞe�b2
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As a consequence, the Nusselt number is given by

Nu ¼ 2r0qw

kðT w � T bÞ
¼ 2/w
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¼ 2/wðfÞ 1�
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:

ð40Þ
The expressions of the dimensionless temperature field

and of the local Nusselt number given by Eqs. (36) and
(40) refer to a general axial distribution of the wall heat flux
/w(f). In the following, two special cases are investigated in
detail: a uniform wall heat flux, a linearly varying wall heat
flux.

4. Uniform wall heat flux

If the wall heat flux distribution is a constant,
qw(z) = qw0, one can define the Brinkman number such that

/wðfÞ ¼
r0qw0

lu2
m

¼ 1

Br
: ð41Þ

As a consequence of Eqs. (37) and (41), the function G(f,b)
can be expressed as

Gðf; bÞ ¼ 2

Brb2
eb2f=2 � 1
	 


: ð42Þ
Therefore, Eqs. (36) and (39) can be rewritten as

hðg; fÞ ¼ �2 1� g2
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Far away from the entrance cross-section f = 0, strictly
speaking in the limit f ? +1, the axial gradient of temper-
ature becomes a constant, oh/of = constant, so that the
dimensionless temperature field is uniquely determined by
Eqs. (7)–(9) and is such that

lim
f!þ1

½hð1; fÞ � hðg; fÞ�

¼ 2ð1� g2Þ2 þ 1

4Br
ð1� g2Þð3� g2Þ; ð45Þ
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½hw � hb� ¼ 1þ 11

24Br
: ð46Þ

A comparison between Eqs. (43)–(46) leads to the follow-
ing sum rule:X1
n¼1

uðg;bnÞ
bnC0ðbnÞ

¼ � 11

48
þ 1

8
ð1� g2Þð3� g2Þ: ð47Þ

This sum rule is very useful since the series on the left
hand side of Eq. (47) has a very poor convergence espe-
cially for g = 1 where truncation to the first 100 terms
yields a result with a relative error of 3.6%. On account
of Eq. (47), Eqs. (43) and (44) yield
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4Br
11
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By employing Eqs. (40) and (49), the local Nusselt number
is expressed as

NuðfÞ ¼ 48

24Br þ 11� 48X1ðfÞ
; ð50Þ

where

X1ðfÞ ¼ �
X1
n¼1

uð1; bnÞ
bnC0ðbnÞ

e�b2
nf=2: ð51Þ

In the case Br = 0, the values of Nu(f) determined by
means of Eqs. (50) and (51) are in perfect agreement with
those reported in Ref. [14] with reference to the hypothesis
of negligible viscous dissipation (see Table 2). Moreover, in



Table 2
Values of Nu(f) for uniform wall heat flux and Br = 0

f Nu(f)

Present paper Ref. [14]

0.00005 34.51065 34.511
0.0001 27.27564 27.276
0.0005 15.81273 15.813
0.001 12.53816 12.538
0.005 7.493677 7.4937
0.01 6.148144 6.1481
0.02 5.198390 5.1984
0.03 4.815668 4.8157
0.04 4.621309 4.6213
0.05 4.513886 4.5139
0.1 4.374793 4.3748
0.2 4.363702 4.3637
0.5 4.363636 –
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this case, the dimensionless thermal entrance length, i.e. the
value of f such that Nu is 0.05% greater than the asymp-
totic value 48/11, can be easily evaluated as

L�th ¼ 0:043052765; ð52Þ
in perfect agreement with the value reported in Ref. [7].

On account of Eq. (47), one can conclude that function
X1(f) has the following properties:

X1ð0Þ ¼
11

48
; lim

f!þ1
X1ðfÞ ¼ 0: ð53Þ

As it is shown in Table 3, X1(f) is a monotonic decreas-
ing function of f. These simple features of X1(f) allow one
to predict the qualitative behavior of the local Nusselt
number both for positive and for negative values of the
Brinkman number. In general, Eqs. (50) and (53) lead to
the conclusion that

Nuð0Þ ¼ 2

Br
; lim

f!þ1
NuðfÞ ¼ 48

24Br þ 11
: ð54Þ
Table 3
Values of X1(f) and X2(f)

f X1(f) X2(f) � 102

0 0.229167 0.111762
0.00005 0.200190 0.111243
0.0001 0.192504 0.110753
0.0005 0.165926 0.107214
0.001 0.149410 0.103289
0.005 0.0957208 0.0798017
0.01 0.0665160 0.0598910
0.02 0.0367994 0.0349942
0.03 0.0215112 0.0207888
0.04 0.0127777 0.0124110
0.05 0.00762807 0.00742086
0.06 0.00456095 0.00443925
0.07 0.00272840 0.00265601
0.08 0.00163240 0.00158917
0.09 0.000976716 0.000950860
0.1 0.000584406 0.000568939
0.2 3.43725 � 10�6 3.34628 � 10�6

0.5 6.99363 � 10�13 6.80854 � 10�13

1 0 0
4.1. Case Br > 0

For positive values of Br, Eqs. (50) and (53) allow one to
infer that Nu is a monotonically decreasing function of f,
free of singularities. Plots of Nu versus f for different posi-
tive values of Br are sketched in Fig. 2. This figure shows
that, by increasing the value of Br, the local Nusselt num-
ber distribution in the entrance region tend to become
more and more uniform. This feature is consistent with
the significance of an increasing value of Br: the larger is
the Brinkman number the smaller is the uniform wall heat
flux prescribed. Hence, a large Brinkman number corre-
sponds to a slight change of the boundary condition from
the upstream region (adiabatic wall) to the downstream
region (nonzero wall heat flux).

4.2. Case �11/24 < Br < 0

In this case, on account of Eqs. (50) and (53), the follow-
ing behavior of Nu is predicted. For small values of f, Nu(f)
is negative and monotonically decreasing. The local Nus-
selt number has a vertical asymptote (singularity) for an
axial position f = fs which depends on Br and is such that

X1ðfsÞ ¼
Br
2
þ 11

48
: ð55Þ

For f > fs, Nu(f) is positive and decreases monotonically
with f. Special cases are given by the limit Br ? 0, when the
axial position fs tends to 0, and by the limit Br ? �11/24,
when the axial position fs tends to +1. These features are
consistent with Eq. (54). The physical reason of the
singularity of Nu is the existence of an axial position where
the difference hw � hb vanishes. Such a circumstance, is
expected to occur for sufficiently high values of the sub-
tracted wall heat flux (small negative values of Br), because
the asymptotic value of hb is higher than that of hw, due to
the internal heat generation. Since, at f = 0, the reverse
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Fig. 2. Uniform wall heat flux: plots of Nu versus f for Br = 0 (a),
Br = 0.02 (b), Br = 0.1 (c), Br = 0.5 (d), Br = �0.6 (e), Br = �0.5 (f).
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occurs (hb < hw), an axial station where the quantities hb

and hw are equal must exist. Fig. 3 refers to the range
�11/24 < Br < 0 and displays the behavior of Nu(f) in
two cases: Br = �0.1, Br = �0.2.

4.3. Case Br < �11/24

As a consequence of Eqs. (50) and (53), in this case, Nu

is a negative monotonically decreasing function of f, free of
singularities. Plots of Nu versus f for different negative val-
ues of Br smaller than �11/24 ffi �0.458333 are sketched in
Fig. 2. As in the case Br > 0, also for Br < �11/24 one con-
cludes that an increase of jBrj yields a more uniform distri-
bution of the local Nusselt number.

4.4. Sensitivity to the initial condition

The results obtained are based on the assumption of a
non-uniform initial temperature distribution in the
entrance section. In the literature, other analytical solu-
tions for uniform wall heat flux have been obtained by
using separation of variables, in the case of a uniform
entrance temperature distribution [2,6]. The sensitivity of
the solution to the initial condition can be estimated by
comparing the results obtained in the present section with
those provided, for instance, by Ou and Cheng [2]. The
asymptotic value of Nu reached for f ? +1 does not
depend on the initial condition and, in fact, is the same
in the present paper and in Ref. [2]. For negative values
of Br, strong differences between the present results and
those reported by Ou and Cheng [2] exist. Indeed, these
authors show that, for Br < �11/24, singularities of the
local Nusselt number arise at some axial station. These sin-
gularities are due to the vanishing of the difference Tw � Tb

at an axial distance from the entrance cross-section that
depends on the value of Br. On the other hand, no singu-
larities of Nu arise in the present case of adiabatic prepara-
tion for Br < �11/24, as specified in Section 4.3. For
positive values of the Brinkman number, the dependence
on the initial condition is also very strong as is shown in
Fig. 4, where the Ou and Cheng evaluation of Nu(f) for
Br = 0.5 is compared with the one obtained in the present
paper.

5. Linearly varying wall heat flux

If the wall heat flux is a linear function of z,
qw(z) = qw0f, function /w(f) can be expressed as

/wðfÞ ¼
r0qw0

lu2
m

f ¼ f
Br
: ð56Þ

As a consequence of Eqs. (37) and (56), the function G(f,b)
can be expressed as

Gðf; bÞ ¼ 2

Brb4
2þ ðb2f� 2Þeb2f=2
h i

: ð57Þ

Therefore, Eqs. (36) and (39) can be rewritten as

hðg; fÞ ¼ �2ð1� g2Þ2 þ 4

Br

X1
n¼1

uðg; bnÞ
b3

nC0ðbnÞ

þ 32þ 11� 6ð1� g2Þð3� g2Þ
24Br

� �
fþ 4

Br
f2

� 4

Br

X1
n¼1

uðg; bnÞ
b3

nC0ðbnÞ
e�b2

nf=2; ð58Þ

hw � hb ¼ 1þ 4

Br

X1
n¼1

uð1; bnÞ
b3

nC0ðbnÞ
þ 11

24Br
f

� 4

Br

X1
n¼1

uð1; bnÞ
b3

nC0ðbnÞ
e�b2

nf=2: ð59Þ

Eqs. (58) and (59) allow one to infer that, for large f, i.e.
in the fully-developed regime, the following relations hold:
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hð1; fÞ � hðg; fÞ ffi vðgÞ þ ð1� g2Þð3� g2Þ
4Br

f; ð60Þ

hw � hb ffi c0 þ
11

24Br
f; ð61Þ

where v(g) and c0 are given by

vðgÞ ¼ 2 1� g2
� �2

þ 4

Br

X1
n¼1

uð1; bnÞ
b3

nC0ðbnÞ
�
X1
n¼1

uðg; bnÞ
b3

nC0ðbnÞ

" #
; ð62Þ

c0 ¼ 1þ 4

Br

X1
n¼1

uð1; bnÞ
b3

nC0ðbnÞ
: ð63Þ

On the other hand, by imposing compatibility between
Eq. (60) and the governing Eqs. (7)–(9), one obtains

vðgÞ ¼ 2ð1� g2Þ2 � ð1� g2Þ3ð53� 9g2Þ
4608Br

; ð64Þ

c0 ¼ 1� 103

23; 040Br
: ð65Þ

A comparison between Eqs. (62)–(65) allows one to obtain
the following sum rule:X1
n¼1

uðg; bnÞ
b3

nC0ðbnÞ
¼ � 103

92; 160
þ ð1� g2Þ3ð53� 9g2Þ

18; 432
: ð66Þ

By employing this sum rule, Eqs. (58) and (59) can be
rewritten as

hðg; fÞ ¼ � 103

23; 040Br
� 2ð1� g2Þ2 þ ð1� g2Þ3ð53� 9g2Þ

4608Br

þ 32þ 11� 6ð1� g2Þð3� g2Þ
24Br

� �
fþ 4

Br
f2

� 4

Br

X1
n¼1

uðg; bnÞ
b3

nC0ðbnÞ
e�b2

nf=2; ð67Þ

hw � hb ¼ 1� 103

23; 040Br
þ 11

24Br
f� 4

Br

X1
n¼1

uð1; bnÞ
b3

nC0ðbnÞ
e�b2

nf=2:

ð68Þ
As a consequence of Eqs. (40), (56) and (68), the local
Nusselt number can be expressed as

NuðfÞ ¼ 46; 080f
23; 040Br � 103þ 10; 560fþ 92; 160X2ðfÞ

; ð69Þ

where

X2ðfÞ ¼ �
X1
n¼1

uð1; bnÞ
b3

nC0ðbnÞ
e�b2

nf=2: ð70Þ

As a consequence of Eqs. (51) and (70), it can be easily
shown that

X02ðfÞ ¼ �
1

2
X1ðfÞ: ð71Þ

On account of Eq. (66), one can conclude that function
X2(f) has the following properties:

X2ð0Þ ¼
103

92; 160
; lim

f!þ1
X2ðfÞ ¼ 0: ð72Þ
As it is shown in Table 3, X2(f) is a monotonic decreas-
ing function of f. These simple features of X2(f) allow one
to predict the qualitative behavior of the local Nusselt
number both for positive and for negative values of the
Brinkman number. In general, Eqs. (69), (71) and (72) lead
to the conclusion that

lim
f!þ1

NuðfÞ ¼ 48

11
; ð73Þ

whatever is the value of the Brinkman number, while

Nuð0Þ ¼
0; Br 6¼ 0

þ1; Br ¼ 0:

�
ð74Þ

The existence of the fully developed value of the Nusselt
number given by Eq. (73) was predicted by using asymp-
totic methods in Ref. [15].

5.1. Case Br > 0

For positive values of Br, function Nu(f) is free of singu-
larities. If

Br >
103

23; 040
ffi 0:00447049; ð75Þ

then Eq. (69) allows one to infer that Nu is a monotonically
increasing function of f. On the other hand, if

0 < Br <
103

23; 040
; ð76Þ

the local Nusselt number initially undergoes a rapid in-
crease with f, reaches a maximum, and then decreases
attaining asymptotically the fully developed value 48/11.
The smaller is the value of Br, the smaller is the value of
f where Nu is maximum. In the limit Br ? 0, the maximum
degenerates into a singularity in the entrance cross-section
f = 0, coherently with Eq. (74). In the latter limit, which
corresponds to a negligible effect of viscous dissipation,
the dimensionless thermal entrance length is given by

L�th ¼ 0:20482476: ð77Þ
Then, in the case of linearly varying wall heat flux, the va-
lue of L�th is considerably greater than in the case of uniform
wall heat flux (see Eq. (52)).

Plots of Nu(f) are reported in Fig. 5 with reference to
different positive values of Br. These plots show how the
thermal entrance region becomes more and more expanded
as the value of Br increases. This feature is completely
expected since, as Br increases, the wall heat flux becomes
a slower and slower increasing function of f. As a conse-
quence, if Br has a high value, it takes a very long axial dis-
tance for the wall heat flux to attain a value comparable to
the viscous dissipation heating contribution. The special
case Br ? 0 is represented in Fig. 6.

5.2. Case Br < 0

For negative values of Br, the local Nusselt number
becomes singular at some axial station. The singularity
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arises where the denominator of the fractional expression
of the Nusselt number Eq. (69) becomes zero. For suffi-
ciently high values of jBrj (jBrj J 0.05), the axial position
of this singularity, f = fs, can be evaluated with a fair
approximation as

fs ffi
103þ 23; 040jBrj

10; 560
: ð78Þ

Examples of the singular behavior of the local Nusselt
number for Br < 0 are sketched in Fig. 7, where the two
cases Br = �0.001 and Br = �0.1 are considered. This fig-
ure shows that the same expansion of the thermal entrance
region when jBrj increases, observed for positive values of
Br, occurs also if Br < 0.

6. Considerations on the Brinkman number

The Brinkman number, defined in Eq. (41), is a param-
eter inversely proportional to the reference wall heat flux
qw0, that characterizes the thermal boundary conditions
at the wall. Hence, in principle, any arbitrarily high value
of Br can be found in an actual flow provided that the ref-
erence wall heat flux qw0 is sufficiently small. However, the
possibility to obtain very high values of Br may conflict
with the practical difficulties in producing conditions of
extremely low wall heat flux. This is the reason why, in
the present study, cases such that Br 6 10 have been con-
sidered. Indeed, the value Br = 10 is very high, but it can
be reasonable in some cases, as it will be shown in the fol-
lowing two examples.

6.1. First example

Let us consider the flow of a highly viscous fluid, castor
oil, in a duct with r0 = 1 mm. If the fluid temperature is
approximately 20 �C, the fluid viscosity is l = 0.986 Pa s.
By assuming um = 0.1 m s�1, one obtains that Br = 10
would mean qw0 = 0.986 W m�2. Although small, this
value of wall heat flux appears to be feasible in an experi-
mental apparatus.

6.2. Second example

Let us consider the flow of water in a microchannel,
namely in a duct with r0 = 10�6 m. If the water tempera-
ture is approximately 20 �C, its viscosity is l = 1.002 �
10�3 Pa s. By assuming um = 0.1 m s�1, one obtains that
Br = 10 would mean qw0 = 1.002 W m�2. This value of
wall heat flux is approximately equal to that obtained in
the first example. However, it appears that this thermal
condition is even easier to be obtained in practice due to
the rather small diameter of the duct.

7. Conclusions

The laminar forced convection in the thermal entrance
region of a circular duct has been investigated by taking
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into account the effect of viscous dissipation in a self-con-
sistent way. More precisely, the initial condition assumed
at the thermal entrance section has been determined by
assuming an adiabatic preparation of the fluid in the
upstream region. This approach, which differs from tradi-
tional treatments of the same problem, ensures that the
initial condition can be, at least in principle, reproduced
in a possible experimental validation of the results. A sim-
ilar possibility does not exist whenever the same problem is
solved assuming a uniform initial temperature in the
entrance section. In fact, a fluid with viscous heating in
laminar hydrodynamically developed flow cannot be pre-
pared with a uniform temperature profile.

The local energy balance equation has been solved in the
downstream region, by considering a general axially-vary-
ing wall heat flux distribution. The solution has been
obtained analytically by the Laplace transform method.
The general solution has been applied to a pair of special
cases: uniform wall heat flux, linearly varying wall heat flux.

In the case of uniform wall heat flux, it has been pointed
out that

� the distribution of the local Nusselt number is rather
sensitive to the initial condition, as it becomes apparent
by comparing the results obtained with those available
in the literature for the case of uniform entrance
temperature;
� the distribution of the local Nusselt number becomes

more and more uniform as the value of the Brinkman
number Br increases.

On the other hand, in the case of linearly varying wall
heat flux, it has been shown that

� the local Nusselt number attains asymptotically the fully
developed value 48/11, whatever is the value of Br;
� the thermal entrance region tends to increase its length

as the value of jBrj increases.
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